COTS, which stands for Commercial- Off-The-Shelf, is a ready-made application or software available for sale to the public. It is a time saver for many organizations as it obviates the need for them to develop certain general purpose applications like word-processing applications, accounting applications, time-tracking applications, etc. Imaging if every company has to design its own word processing software from scratch how much time and resources will go into such an undertaking. On several cases, these COTS have to be used on stand-alone bases or integrated into a system. Using COTS on a stand-alone basis is simple but when it has to be used and embedded in software application it becomes more of a challenging task. Several factors have to be considered before a COTS product can be effectively utilized in a software development. These include:
a) Compatibility with the software language used in the application design
b) If the COTS is an open source application or not. If it is not an open source are the vendors willing to work with developers to supply all needed source codes to fully implement and integrate the COTS product with the software?
c) Does the COTS product require an additional software or API to fully function in the new environment? There are cases where dependencies are created between the host application and the COTS classes that result in tight coupling between these dependent components. In such cases dependency injection (Inversion of Control) can cause the components to become more loosely coupled and reusable. An example is the use of Microsoft Unity in ASP.Net to create a loosely coupled dependency with Microsoft Office and enable the creation of instances of the objects that already contain the Microsoft Office components without referencing specifically to Microsoft Office objects or classes. Such secondary inclusions can create a higher level of complexity in integrating COTS in the new software.
d) Is the cost of using and licensing the COTS software so exorbitant that it defeats the purpose of saving money and time for the company?
e) Can the COTS product be modified in such a way as to provide full functionality for the proposed system?
As a result of these factors COTS software prototyping is not always feasible in every given situation.
My Experience with COTS Prototyping
[bookmark: _GoBack]Most of us have used COTS in our applications. Microsoft Excel, Microsoft Word or any of the Microsoft office tools are all COTS products that can be embedded in our application designs. One of the most exciting experiences I have had with COTS software includes embedding MATLAB in an MVC 4 application using C#. Prior to embedding this software in the application the client – who had a PhD degree in informatics - would generate the result of some complex calculations that were then exported to excel and then to PDF which is then imported into the website as a report. These took several steps to accomplish. After tinkering with the software and reading the documents from the vendor I was able to use the MCR (matlab component runtime) and the appropriate COM objects in C# to embed MATLAB inside the website. The client is now able to run the MATLAB directly from the website and generate the report without the convolution of exporting, converting, and all the mess.
This article and its postulations clearly point out the revolutionary aspects of testing that is lacking in the traditional projects. In a nutshell, this article simply states a simple rule: “fix every defect as soon as you discover it”. Even though the article mentioned four key areas of agile software testing which are: test design and activity execution, working with professional testers, planning, and defect management, the one area I feel that is most crucial to the overall success and agility of this testing method is defect management. In the traditional project (like waterfall) a feature-complete version of the application is sent to the quality assurance team (testers who never attended any collaborative meetings with the developers or architects) for the first time after a comparatively longer period of planning, designing and coding. What results is usually an avalanche of defects and bugs, some of which could have been intercepted had some pre-emptive steps been taken earlier in the game. The article continues to state that “because the effort to repair defects always greatly exceeds the available resources, a lengthy period of prioritization begins.” The most important defects are tackled first in order to meet up with the deadline, meaning that the deployment will have some of the identified bugs. The article states that the agile method has no concept of defect severity. Defects are resolved as soon as possible after they are discovered.
 The idea of fixing all defects as soon as possible, according to the article, has several advantages, which include:
a) It takes far less time to resolve each defect under this method. This is because “in agile projects everyone writes tests”. Having everyone test ,according to the article has the following advantages:
i. It eliminates the team’s reliance on a single, assigned tester which could result in a bottle neck
ii. Due to the fact that the developers who write the codes are also involved in the testing, their test-awareness is heightened and this leads to a quicker identification of the solution to the problem
iii. Since the developers are also testers there is a tendency for them to enhance the testability of the application which results in a quick turnaround for bug fixes.
Moreover, since the much time does not elapse the relevant code to fix the bug will still be fresh in the developers mind.

b) Working on a fully-tested, defect-free and stable version of an application makes the development smother, faster and easier. If an application at version 1 has an error that is not detected and then there is a subsequent version (version 2), that error will propagate into version 2 and create more problems. A new version that emanates from a clean and fully tested version will not be prone to any errors inherent from a proceeding version.
c) It obviates the need to constantly engage the client or customer in this unpleasant game of prioritizing bug fixes because there will be none. Every bug is taken care of before a version is released and, in fact, the beginning of every iteration is dedicated to the fixing of the previous iteration’s open defects.

All the other features of XP and agile testing method described in this article, especially for large projects, appear to be superior to those utilized in traditional testing methods. The key is collaboration. According to the article, “the project employed XP’s whole-team and sit-together practices”. It went on to state that “this team-centered approaches resulted in two measurable test-related benefits” of which one was defect-management overhead which was lower than traditional projects where the QA and the development teams are separate entities.

i.
